KernelGPT: Enhanced Kernel Fuzzing via Large
Language Models

Chenyuan Yang
University of Illinois at
Urbana-Champaign
Champaign, USA
cy54@illinois.edu

Abstract

Bugs in operating system kernels can affect billions of devices
and users all over the world. As a result, a large body of re-
search has been focused on kernel fuzzing, i.e., automatically
generating syscall (system call) sequences to detect potential
kernel bugs or vulnerabilities. Kernel fuzzing aims to gener-
ate valid syscall sequences guided by syscall specifications
that define both the syntax and semantics of syscalls. While
there has been existing work trying to automate syscall spec-
ification generation, this remains largely manual work, and
a large number of important syscalls are still uncovered.

In this paper, we propose KernelGPT, the first approach to
automatically synthesizing syscall specifications via Large
Language Models (LLMs) for enhanced kernel fuzzing. Our
key insight is that LLMs have seen massive kernel code, doc-
umentation, and use cases during pre-training, and thus can
automatically distill the necessary information for making
valid syscalls. More specifically, KernelGPT leverages an iter-
ative approach to automatically infer the specifications, and
further debug and repair them based on the validation feed-
back. Our results demonstrate that Kernel GPT can generate
more new and valid specifications and achieve higher cover-
age than state-of-the-art techniques. So far, by using newly
generated specifications, KernelGPT has already detected
24 new unique bugs in Linux kernel, with 12 fixed and 11
assigned with CVE numbers. Moreover, a number of specifi-
cations generated by KernelGPT have already been merged
into the kernel fuzzer Syzkaller, following the request from
its development team.

CCS Concepts: « Security and privacy — Operating sys-
tems security; - Software and its engineering — Soft-
ware testing and debugging.

Keywords: Linux Kernel, Fuzzing, Large Language Models,
Code Analysis

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

ASPLOS °25, March 30-April 3, 2025, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1079-7/25/03
https://doi.org/10.1145/3676641.3716022

Zijie Zhao
University of Illinois at
Urbana-Champaign
Champaign, USA
zijied@illinois.edu

Lingming Zhang
University of Illinois at
Urbana-Champaign
Champaign, USA
lingming@illinois.edu

ACM Reference Format:

Chenyuan Yang, Zijie Zhao, and Lingming Zhang. 2025. Kernel-
GPT: Enhanced Kernel Fuzzing via Large Language Models. In
Proceedings of the 30th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
Volume 2 (ASPLOS °25), March 30-April 3, 2025, Rotterdam, Nether-
lands. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3676641.3716022

1 Introduction

Operating system kernels are among the most critical sys-
tems, as all other types of systems rely on and operate
on them. Kernel vulnerabilities, such as crashes or out-of-
bounds writes, can be maliciously exploited, potentially caus-
ing substantial harm to all users. To ensure the correctness
and security of these fundamental systems, fuzzing (or fuzz
testing) [49, 64, 67] has been employed for decades. Such
techniques automatically generate a vast number of system
calls as test inputs, intending to detect potential kernel bugs.

Among various kernel fuzzing techniques [23, 28, 39],
Syzkaller [5] is one of the most popular tools. Syzkaller
has identified over 5K bugs that are recognized and fixed
by kernel developers [4]. Thus, numerous research efforts
have focused on enhancing Syzkaller, targeting areas such
as seed generation [40, 42], seed selection [55], guided mu-
tation [21, 48], and syscall specification generation [14, 15,
25, 47]. Among these, the syscall specifications written in
syzlang [6] are particularly crucial, significantly contribut-
ing to the effectiveness of Syzkaller and allowing it to cover
more kernel modules. They specify the syntax of syscalls,
and their intra- and inter-dependencies, enabling the gen-
eration of more valid syscall sequences that probe deeper
into the kernel code logic. However, crafting syscall spec-
ifications is difficult because it is predominantly a manual
process and require much in-depth kernel knowledge.

To address this issue, recent research has focused on au-
tomating the generation of syscall specifications, particularly
for device drivers. For instance, DIFUSE [15] and SyzDe-
scribe [25] employ static code analysis to identify device
driver syscall handlers and infer their corresponding descrip-
tions. The top half of Figure 1 illustrates the workflow of
static analysis-based techniques. Initially, experts manually
define rules to infer descriptions from the source code, draw-
ing upon their own understanding of the kernel codebase

https://orcid.org/0000-0002-7976-5086
https://orcid.org/0009-0008-0718-3088
https://orcid.org/0000-0001-5175-2702
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3676641.3716022
https://doi.org/10.1145/3676641.3716022
https://doi.org/10.1145/3676641.3716022

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Chenyuan Yang, Zijie Zhao, and Lingming Zhang

Human Learnin
© Src: miscdevice {.name = DEV_NAME } g
c Spec: openat(..., DEV_NAME, ...) s . _ ” . .
.0 i:ENmiZCd‘?Vlce {'nfm‘;E\'/ zi;EﬂAME y | Static Analysis Tool
5 Src: switch (cmd) { case CMD: ... } ‘ evice-name = = -
g Spec: ioctl(..., const[CMD], ...) IF “switch (cmd) { case CMD: ...}” Hard || RULET L=
Limited and fixed examples THEN “ioctl.cmd = CMD” Coded

Src: device {.nodename = DEV_NAME } Large Language Models openat(dev_name) fd
o) Spec: openat(..., DEV_NAME, ...) IF “miscdevice {.name = DEV_NAME }” ioctl(fd, cmd, type)
(] d and miscdevice.nodename == NULL
:‘55 Hogejccdegl) WHCEETEDa BiisefCase THEN “device_name = DEV_NAME” type {
90 From trillions of training data s X fieldl typel
s Updated on the fly { v IF “switch (cmd) { case CMD: ...}”
S THEN “ioctl.cmd = reverse_op(CMD)” 3}
= Learning Resources Missed

RULE-N 500 ooo RULE-M

by Human

Specifications

Figure 1. Workflows of syscall specification inference based on static analysis and LLMs

and existing Syzkaller examples. The accuracy and effective-
ness of the generated syscall descriptions depend heavily on
the comprehensiveness of these mapping rules, which is of-
ten challenging, costly, and tedious. Moreover, as the kernel
codebase evolves, these mapping rules are subject to frequent
changes. Keeping up with these evolving scenarios is a sig-
nificant challenge for static analysis methods, particularly
given the extensive implementation efforts involved. Plus,
existing approaches struggle to generate human-readable
specifications, yet readability is essential for validation and
maintenance, according to Syzkaller developers [3].

Take, for instance, Figure 2a and Figure 2b, which illus-
trates the source code of two struct variables, associated
with the device mapper driver [57], responsible for mapping
physical block devices to higher-level virtual block devices.
Specifically, these two variables are the device operation han-
dler and its reference usage, crucial for inferring the device
name. Current advanced syscall description generators, like
SyzDescribe [25], typically rely on the field name in struct
miscdevice to determine the device name for driver inter-
action, which is a conventional use case. However, in this
example, the correct device name is actually specified in the
field nodename, a legitimate but rare use case, leading to an in-
correct inference by SyzDescribe. Moreover, it fails to analyze
the command value for ioctl, the interface to interact with
the device. This is because the command value undergoes
a modification in the code, cmd = _IOC_NR(command), where
command is from users. Such scenarios are not accounted for
by SyzDescribe, which erroneously uses cmd as the command
value in its generated descriptions, as shown in Figure 2c.
Key insight. Can we automate and improve the learning of
various rules for generating high-quality specifications from
the codebase with minimal effort? We address this question
based on the insight that modern Large Language Models
(LLMs) [13, 20, 31, 37, 38, 44, 56] are pre-trained on vast

static const struct file_operations _ctl_fops = {
.open = dm_open,
.release = dm_release,
.poll = dm_poll,
.unlocked_ioctl = dm_ctl_ioctl, IOCTL handler
.compat_ioctl = dm_compat_ctl_ioctl,
.owner = THIS_MODULE,
.11seek = noop_llseek,

(a) Device operation handler

static struct miscdevice _dm_misc = {
.minor = MAPPER_CTRL_MINOR,
.name = DM_NAME,
.nodename = DM_DIR "/" DM_CONTROL_NODE,
.fops = &_ctl_fops

(b) Device operation handler reference

resource fd_34545[fd] Wrong device name

openat$34545(. .., "/dev/device-mapper"1], ...) fd_34545

B0 Wrong CMD value

ioct1$34545_2(fd fd_34545, cmd const[2], arg ptr[in, array[int8]1)
5 descriptions are omitted

No definition for dm_ioctl

(c) Specification generated by SyzDescribe

resource fd_dm[fd]
openat$dm(. .., "/dev/mapper/control”, ...) fd_dm

ioct1$DM_LIST_DEVICES(fd fd_dm, cmd const[DM_LIST_DEVICES],
arg ptrlinout, dm_ioctl])
17 descriptions are omitted
dm_ioctl {
version array[int32, 3]
data_size int32=—> “WARNING: kmalloc bug in ctl_ioctl”

CMD value: 3241737474

(d) Specification generated by Kernel GPT

Figure 2. Device mapper driver in drivers/md/dm-ioctl.c

datasets, including kernel codebases, documentation, and
real-world syscall use cases. The Linux kernel’s extensive his-
tory and associated wealth of discussions, tutorials, and doc-
umentation further enrich this training data. Consequently,

KernelGPT: Enhanced Kernel Fuzzing via Large Language Models

LLMs have likely been exposed to and potentially learned a
wide range of information about syscall specifications. This
superior knowledge base makes them adept at analyzing
kernel source code, even for atypically implemented syscalls,
and generating high-quality, readable specifications.

Utilizing LLMs as shown in Figure 1, we can automate the
process of inferring rules for mapping codebase content to
syscall specifications and tailor these rules to be more general
and adaptable to diverse cases. Additionally, this approach
eliminates the need for hard-coding rules within complex
static analysis tools since LLMs inherently can analyze code,
which significantly eases the process of adapting to evolving
changes within the kernel codebase. Returning to the case
of the device mapper driver, LLMs demonstrate their capa-
bility to accurately infer broader rules. They recognize that
.nodename should be used as the device name when it is set
and can identify modifications made to the command value.
Consequently, in our experiments, the specification gener-
ated by LLMs for the device mapper (Figure 2d) is not only
correct but also more complete compared to those produced
by SyzDescribe. Impressively, this specification inferred by
LLMs contributes to the discovery of 3 new bugs for this
driver, 2 assigned with CVEs.

Building on the insight discussed above, we introduce
KernelGPT, the first approach to fully automate syscall speci-
fication generation by using Large Language Models (LLMs),
focusing on kernel drivers and sockets. The key idea of Ker-
nelGPT is to employ LLMs for automating and enhancing the
rule inference process, aimed at synthesizing high-quality
syscall descriptions from their source code. Taking the lo-
cated operation handler as input, KernelGPT recovers the
identifier value (e.g., device name or command value), type
structure, and dependency for the syscalls related to the
handler. To this end, KernelGPT iteratively applies LLMs to
analyze the relevant source code and indicate the missing
but essential information for inference, which will be ana-
lyzed in the next iteration. Afterward, KernelGPT validates
and repairs the generated specifications by consulting LLMs
with the error messages encountered.

Our contributions are summarized below:

e We propose the first automated approach to leveraging
the potential of LLMs for kernel fuzzing. Moreover, dif-
ferent from existing LLM-based fuzzing work [17, 59, 63],
our approach goes beyond merely generating test inputs;
we synthesize components of the fuzzing framework to
integrate LLMs with matured frameworks developed for
years, opening a new dimension for LLM-based fuzzing.

e We implement KernelGPT to infer syscall specifications
with a novel iterative strategy and further repair the
descriptions with the validation feedback. Our artifact is
available at https://github.com/ise-uiuc/Kernel GPT.

o We evaluate KernelGPT in generating new specifications
to detect bugs and for the existing drivers and sockets to

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

compare against state-of-the-art baselines, SyzDescribe
and Syzkaller. Our experimental results show that Ker-
nelGPT can generate more new and valid syscall descrip-
tions and achieve higher coverage than baselines.

o KernelGPT has already detected 24 previously unknown
bugs, with 12 fixed and 11 CVE assignments, in the up-
stream Linux kernel. Notably, a number of specifications
generated by KernelGPT are merged into Syzkaller, fol-
lowing a request from its development team.

2 Background
2.1 Kernel Fuzzing

OS Kernel Bugs. An OS kernel provides userspace applica-
tions with key functionalities, such as virtual memory, file
system, networking, and access to devices. To protect the
safety of all applications and users, interactions between
userspace and kernel are confined to a well-defined system
call interfaces (syscall), e.g., the POSIX standard. Kernel
bugs that can be triggered through the syscall interface pose
a significant risk since the interface is easily accessible to
attackers. Therefore, detecting bugs through the syscall in-
terface has been an important direction of kernel security.
In this work, we focus on detecting kernel bugs through the
Linux kernel system call interface.
Device driver and socket. Device drivers and sockets are
the most complex and important components in the Linux
kernel, comprising 41.6% and 27% of the LoC, respectively [12].
Due to the diversity of devices and network protocols, the
syscall for interacting with drivers and sockets is complex.
Drivers and sockets register syscall handlers that are in-
voked when corresponding syscalls are used. Device drivers
communicate with hardware upon receiving syscalls. Fig-
ure 2a and Figure 2b show data structures used for registering
drivers. The nodename field represents the device file name,
and the fops field stores function pointers for custom handler
functions. When a user calls open with the nodename, kernel
invokes the dm_open handler and associates the file descriptor
with the driver. Subsequent syscalls with this file descriptor
invoke corresponding handlers. Sockets register syscalls like
socket, recvfrom, and setsockopt. Each driver and socket
registers different handlers, requiring unique specifications
for effective fuzzing.
Generic syscalls. While drivers and sockets can register
syscall handlers, only a limited number of syscalls can be
registered, and they may not cover all necessary operations.
Generic syscalls like ioctl and setsockopt are heavily used.
They have numeric parameters (identifier values) and an un-
typed pointer parameter. The numeric parameter identifies
the operation, and the untyped pointer is cast to the required
data structure. For example, to get the list of dm device names,
an application calls ioctl with the DM_LIST_DEVICES macro
and a pointer to struct dm_ioctl. Sockets follow a similar
pattern for programming setsockopt handlers.

https://github.com/ise-uiuc/KernelGPT

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

The extensive usage of syscall handlers and generic syscalls

turns a handful of syscalls into thousands of different syscalls,
exposing a large attack surface. Even worse, the implementa-
tions are scattered across a wide array of drivers and sockets.
This makes reasoning, analyzing, and testing the device dri-
vers and sockets particularly challenging.
Syscall Fuzzer. Among various methods for kernel bug de-
tection [14, 15, 19, 23-25, 28, 42, 48, 52, 55], Syzkaller [5], the
state-of-the-art kernel fuzzer, has identified thousands of ker-
nel bugs. Syzkaller uses the syntax and semantics of syscalls
to generate diverse syscall sequences that can cover deep and
diverse code paths. To define the syntax and semantics of
syscalls, Syzkaller provides a domain-specific language, sy-
zlang [6], to define syscall specifications (or descriptions).
Figure 3 are example specifications of three syscalls for the
MSM driver, showcasing syzlang’s expressive power:

e Syntax: The syntax of a system call is expressed by the
definition of parameter types. The types int32, string,
ptr, and the struct rm_msm_submitqueue allow Syzkaller
to know how to structure the bytes for all the parameters.

o Semantically Valid Values: Some parameters have specific
value requirements. For example, the filename " /dev/msm"
is the only valid file for the MSM driver.

o Inter-Syscall Dependency: One syscall may depend on
the output of another. The return value of openat$msm,
fd_msm, is the same variable as the first inputs of the two
ioctl syscalls, indicating their sequential execution.

o Intra-Syscall Dependency: For generic syscalls like ioctl,
the semantics of one parameter may depend on the value
of another parameter. Syzkaller allows defining multiple
specifications for the same syscall to express fine-grained
semantics. For example, for ioct1$NEW and ioct1$CLOSE,
the types of the third parameter depend on the macro
value of the second.

e Type Constraints: Type definitions can incorporate se-
mantic constraints. For example, in rm_msm_submi tqueue,
[0:3] represents the valid range of prio, and (out) de-
notes that msm_submitqueue_id is used as output.

While syzlang supports more advanced features, their
core functionalities are similar to those discussed. Effective
specifications enable Syzkaller to reduce the search space
by filtering out invalid syscall sequences. However, creating
these specifications requires a deep understanding of syscall
semantics, challenging both humans and automated tools.

2.2 Specification Generation

Specifications are typically manually written by Syzkaller
and kernel developers, requiring deep expertise in kernel
and the specific kernel module. Thus, existing Syzkaller spec-
ifications only cover a subset of syscalls, especially for device
drivers [12]. As the kernel evolves, specifications can become
out-of-date [12, 25]. Automated specification generation has
been desired for years [3], but faces several challenges. First,

Chenyuan Yang, Zijie Zhao, and Lingming Zhang

resource fd_msm[fd]
resource msm_submitqueue_id[int32]

openat$msm(..., file ptr[in, string["/dev/msm"]1]1, ...) FdZmsm
ioct1$NEW(fd fd_msm, cmd const[DRM_IOCTL_MSM_SUBMITQUEUE_NEW]
arg ptrlinout, drm_msm_submitqueuel)
ioct1$CLOSE(fd fd_msm, cmd const[DRM_IOCTL_MSM_SUBMITQUEUE_CLOSE],
arg ptr[in, msm_submitqueue_id])

drm_msm_submitqueue {

flags flags[msm_submitqueue_flags, int32]

prio int32[0:3]

id msm_submitqueue_id (out)

)
Figure 3. Specification for the MSM driver in syzlang

discovering the interface of the vast number of operations
implemented behind generic syscalls is challenging. This
involves inferring the correct operation identifier value (e.g.,
device file name, socket domain, or ioctl command value),
and then the corresponding data type for each unique oper-
ation. Moreover, finding the dependencies among syscalls
and data types is also key to reaching deep paths. Failing to
address these challenges would lead to inaccurate specifica-
tions, diminishing the effectiveness of a fuzzing campaign.
Aside from fuzzing performance, readability of the machine-
generated specification is also crucial for human experts to
validate and maintain [3]. Unreadable specifications could
hide flaws that in turn hurt the effectiveness of fuzzing.
Several techniques for specification generation have been
proposed, attempting to address some of the above chal-
lenges. KSG [47] generates specifications by dynamically
probing the kernel. It first opens the devices (or sockets)
existing in a booted environment and probes the kernel to
detect their syscall handlers. Then it infers the handler’s
parameter type through symbolic execution. Relying on ex-
isting device files, KSG is unable to generate specifications
for drivers that are not loaded in the kernel or require more
setup steps. In contrast, DIFUZE [15] and the state-of-the-art
specification generation approach, SyzDescribe [25], both
employ static analysis. DIFUZE finds syscall handlers from
a list of data structures used by common device registration
functions. SyzDescribe discovers syscall handlers by find-
ing the kernel module initialization functions and tracing
down to find the handler function pointers. Both DIFUZE
and SyzDescribe then conduct static analysis to identify the
device file name, command value, and required parameter
type. Their static analysis models common implementation
patterns e.g., a switch case in a handler is likely invoking the
corresponding sub-handlers based on the command value.

2.3 Challenges and Opportunities

Existing static analysis approaches to specification genera-
tion face several limitations.

L-1: Incomplete modeling. Rule-based approaches strug-
gle to capture the diversity of kernel code patterns, leading
to limited coverage. Maintaining these rules is challenging
and impractical.

KernelGPT: Enhanced Kernel Fuzzing via Large Language Models

L-2: Readability. Static analysis often generates specifica-
tions that are difficult for humans to understand, hindering
validation and maintenance [3].

L-3: Textual comprehension. These tools struggle to infer
specifications from textual information, such as comments,
limiting their ability to capture the underlying meaning and
intent of syscall behavior.

Solution: Leveraging LLMs. To address the limitations, we
propose a novel approach leveraging the strengths of LLMs:

e Mitigating L-1: LLMs are pre-trained on extensive code-
bases, enabling them to handle a broader range of cases
more effectively than static analysis rules.

e Mitigating L-2: LLMs can generate descriptive and human-
readable names within specifications based on code, en-
hancing readability and maintenance.

o Mitigating L-3: LLMs excel in interpreting textual infor-
mation, producing specifications that capture the under-
lying meaning and intent of syscall behaviors.

While harnessing the potential of LLMs, we must design
strategies to mitigate their inherent limitations, such as con-
text size restrictions and hallucinations [27]. To achieve this,
we 1) incorporate syz-lang knowledge through few-shot
prompting, 2) develop a novel iterative multi-stage prompt-
ing approach, and 3) leverage off-the-shelf validation tools
for debugging. More details will be discussed in § 3.

3 Design

Figure 4 presents the overview workflow of KernelGPT,
which utilizes a code extractor and an analysis LLM (§ 4) to
fully automatically generate specifications for kernel fuzzing.

KernelGPT takes the kernel codebase and located opera-
tion handlers as input and operates through two automated
phases: Specification Generation @, and Specification Val-
idation and Repair @. Initially, KernelGPT determines the
identifier values (§ 3.1.1), argument types (§ 3.1.2), and de-
pendencies (§ 3.1.3) for describing the syscalls associated
with the given operation handler. In doing so, KernelGPT
utilizes the relevant source code from the kernel codebase
to guide the LLMs in their analysis in a novel iterative way.
If essential information for inference is missing, the analysis
LLM is instructed to indicate what additional information is
required, which is then gathered and presented for analysis
in the following step (§ 3.1 @). Subsequently, Kernel GPT
validates the generated specifications. If errors are found, it
attempts to repair the descriptions by consulting the LLMs
with the error messages (§ 3.2 @).

3.1 Specification Generation

KernelGPT generates the specifications for syscalls by lever-
aging LLMs to analyze the implementation source code of the
syscalls. Initially, we identify the syscall handler functions
(e.g. ioctl and setsockopt) from their respective operation
handlers. We segment the specification generation process

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Algorithm 1: LLM-Guided Iterative Analysis

1 Function Analyze (relatedCode, usagelnfo, step):

2 if step > MAX_ITER then

3 L return 0

4

5 prompt < GenPrompt (relatedCode, usagelnfo)
6

7 result, unknown « QueryLLM (prompt)

8 for (id, usagelnfo) € unknown do

9

10 relatedCode < ExtractCode (id)

11

12 res «<— Analyze (relatedCode, usagelnfo, step + 1)
13

14 Update (result, res)

15 return result

into three stages: identifier deduction, type recovery, and
dependency analysis. This pipeline enables LLMs to focus
on one specific aspect at each stage and avoid misleading
information from irrelevant code snippets. In each stage, we
utilize in-context few-shot prompting [9] to enhance LLMs’
comprehension of the task and formalize output.

Iterative analysis. All three stages follow an iterative anal-
ysis paradigm. The motivation for this iterative design is
two-fold. First, even though state-of-the-art LLMs like GPT4
can support long context size up to 128K [2], this size is still
not enough to provide the entire source code related to a
syscall. Second, the goal of specification generation is to de-
duce the identifier value, type structure, and dependency for
the syscall. However, not all code or helper functions within
the syscall handler are directly relevant to this goal. Con-
sequently, we allow LLMs to identify the pertinent source
code for the current goal.

The pipeline of the iterative analysis is shown in Algo-
rithm 1. First, we generate a few-shot example prompt with
the source code related to the target syscall and its usage
information (Line 5). Then, we query LLMs to infer the de-
scriptions and pinpoint the unknown targets (functions or
types; Line 7). Such unknown functions/types are the ones
that are missing in the provided prompt yet are essential for
the inference. unknown set. Then, for each unknown target,
we extract its source code by using its identifier. This code
is then fed to LLMs along with its usage information for
further analysis (Line 12). This iterative algorithm continues
until there is no unknown target or the iteration reaches a
predefined threshold MAX_ITER (Line 3). Note that the entire
analysis process is fully automated and requires no human
intervention. The unknown information provided by LLMs
is used to guide the analysis process. Next, we demonstrate
in detail how each stage employs this iterative algorithm.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Kernel Code Extractor

struct file_operations _ctl_fops =
{ .unlocked_ioctl = dm_ctl_ioctl, };

Operation Handler o

struct miscdevice _dm_misc =
{ .nodename ... DM_CONTROL_NODE };

Operation Handler Usage

long dm_ctl_ioctl (...) Type
{ return ctl_ioctl(file, command, u); } Recovery

Syscall Handler

Kernel Codebase

int ctl_ioctl (...) { fn =
lookup_ioctl(cmd, &ioctl_flags); ...}

Dispatched Function 9

struct dm_ioctl { u32 version[3]; ..}; -

Type Definition

Analysis LLM lg'

Specification Generation

Identifier Deduction

LLM-guided Iterative Analysis

Specification Repair -

Chenyuan Yang, Zijie Zhao, and Lingming Zhang

Specification

resource fd_dm[fd]

openat$dm(..., "/dev/mapper/control”, ...) fd_dm
c ioct1$DM_REMOVE_ALL(..., arg ptr[in, dm_ioctl])

ioct1$DM_LIST_DEVICES(...arg ptr[inout,dm_ioctl])

ioct1$DM_DEV_CREATE(..., arg ptr[in, dm_ioctl])

Syscall Description

Dependency
Analysis

dm_ioctl {
version array[#ntint32, 3] ...
}

Type Definition

7o {e
int is not defined - Validation

Error Message

Figure 4. Overview of Kernel GPT

3.1.1 Identifier Deduction. The first step of specification
generation is to deduce the identifier value of the syscall. To
achieve this goal, we utilize the iterative strategy described in
Algorithm 1 to analyze the syscall-related source code. The
expected output from LLMs (the output of QueryLLM) is the
set of successfully inferred identifier values (result). If the
logic for checking identifier values is delegated to another
function not presented to LLMs, we instruct LLMs to list
the name and invocation details of this “missing” dispatched
function (the variable unknown). Besides, we also include code
snippets that reference the command variables. If LLMs iden-
tifies any unknown identifier values, KernelGPT proceeds
to analyze the newly identified dispatched function, incor-
porating their usage information from the previous step. In
essence, the output from the unknown of the previous step
serves as a reference for guiding subsequent steps.
Compared to traditional static analysis, LLMs displays
great potential to handle a wider range of scenarios in iden-
tifier value inference. To help with the LLMs understanding,

we provide a few-shot example within the prompt (GenPrompt).

These examples serve as guides for LLMs to improve their
reasoning and deduce the identifier values more effectively.

3.1.2 Type Recovery. Following identifier value infer-
ence, the next stage is to analyze the argument type struc-
ture for each identifier value. Leveraging information from
the identifier deduction stage, we extract related functions
and present them to the LLM to identify argument types.
If type determination logic is delegated to other functions,
we continue the analysis in subsequent steps, using the new
information to guide the process. After determining the ar-
gument types, Kernel GPT generates descriptions for these
types. By retrieving type definition source code from the
Linux kernel codebase and feeding it to the LLM, we obtain
Syzkaller descriptions. If nested types are encountered, they
are marked as unknown for further analysis in following steps.

While static analysis can recover type definitions from
source code, it is difficult to infer the semantic relationships

Source Code
struct vfio_pci_hot_reset_info {
int32 count;

struct vfio_pci_dependent_device devices[];

3

Specification Generated by Static Analysis
vfio_pci_hot_reset_info {

field_0 int32

field_1 array[vfio_pci_dependent_device]

}

Specification Generated by LLM
vfio_pci_hot_reset_info {

count len[devices, int32]

devices ptrlinout, array[vfio_pci_dependent_device]]

}

Figure 5. Type definitions from static analysis and LLM

between nested types, particularly within struct and union
definitions. For instance, consider the field count within the
structure in Figure 5. count represents the number of ele-
ments within another field, devices. Traditional static analy-
sis tools struggle to capture this inherent relationship and
treat these fields independently. In contrast, LLMs can un-
derstand the semantic connections between different fields
or types within nested structures. Kernel GPT leverages this
capability to generate descriptions that capture these rela-
tionships. As depicted in Figure 5, the description produced
by KernelGPT is count len[devices]. The generated descrip-
tion can effectively capture the semantic connection between
count and the number of elements in devices.

3.1.3 Dependency Analysis. Finally, we need to analyze
the dependencies between syscalls. Specifically, the depen-
dency means whether another syscall (or operation handler)
relies on the return value of the current syscall. To achieve
this goal, we leverage LLMs to identify if the return value
could be a resource (e.g., file descriptor) of another operation
handler. KernelGPT extracts the source code of the relevant
functions and presents the code to LLMs. Notably, the return
value relevant functions are marked by LLMs themselves in

KernelGPT: Enhanced Kernel Fuzzing via Large Language Models

the first stage (§ 3.1.1). Suppose the return value can be used
by other syscalls, LLMs identifies them. If the logic for depen-
dency analysis resides in other functions, LLMs marks them
as unknown, and KernelGPT utilizes the new information to
continue the analysis in subsequent steps.

3.2 Specification Validation and Repair

In this phase, inspired by recent work on LLM-based pro-
gram repair [61], our goal is to validate the specifications
generated by KernelGPT and automatically repair the invalid
ones. This is because LLMs may occasionally make mistakes
during the description generation process. To address poten-
tial inaccuracies, we employ off-the-shelf validation tools.
These tools analyze the specifications and provide error mes-
sages if discrepancies are found. Initially, KernelGPT uses the
error messages from them to pinpoint inaccuracies in spe-
cific descriptions, effectively matching each error message
to its corresponding description. Then, for those descrip-
tions identified with errors, Kernel GPT queries LLMs for
correction, guided by few-shot examples. This process in-
volves supplying LLMs with the incorrect description, the
associated error messages, and relevant source code from the
kernel codebase to repair. LLMs are then expected to output
the correct descriptions.

Existing validation tools are limited in their ability to
detect semantic errors [6], primarily focusing on syntax val-
idation and simple semantic checks. For example, runtime
validation of semantic correctness remains a significant chal-
lenge, which is why current syscall specification generation
approaches do not incorporate it [15, 25]. To ensure a more
thorough evaluation, we manually examined the generated
specifications (§ 5.1.3), demonstrating that KernelGPT suc-
cessfully synthesizes semantically correct specifications.

4 Implementation

Target. While our approach is general to various syscalls,
KernelGPT targets those for kernel drivers and sockets, given
the fact that they constitute about 70% LoC in the kernel [12].
For drivers, we focus on the critical ioctl syscall, in addition
to initialization syscalls such as openat and sys_open_dev.
For sockets, we extend our support beyond socket and ioctl
to include syscalls like bind, connect, accept, poll, sendto,
recvfrom, setsockopt, and getsockopt.

Source code extractor. It is implemented using the LLVM
toolchain [7] and parses the kernel codebase to:

o Driver and Socket Operation Handler Extraction. The ex-
tractor employs simple yet general pattern matching to
pinpoint driver and socket operation handlers. These
are then prepared as inputs for KernelGPT, extracted
with their corresponding usage locations. More specifi-
cally, we search for initialization instances of the ioct1 or
unlocked_ioctl fields within the operation handlers. For

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Instruction

Please generate the Syzkaller specification ...
If the command is unclear and dependent on other function,
please list it in the ‘UNKNOWN' section.

Target Device — Stepl

Unknown IOCTL
- FUNC: dm_ctl_ioctl
- USAGE: dm_ctl_ioctl(struct file xfile, uint command, ulong u)

Source Code of Relative Functions
static long dm_ctl_ioctl(...) {
return ctl_ioctl(file, command, (struct dm_ioctl __user *)u);

}

- UNKNOWN
- FUNC: ctl_ioctl
- USAGE: ctl_ioctl(file, command, (struct dm_ioctl __user *)u);

Syzkaller Specification \
lS"

Target Device — Step2

Unknown IOCTL
- FUNC: ctl_ioctl
- USAGE: ctl_ioctl(file, command, (struct dm_ioctl __user *)u);

Source Code of Relative Functions
static int ctl_ioctl(...) {
cmd = _IOC_NR(command);
if (cmd == DM_VERSION_CMD) return 0;
fn = lookup_ioctl(cmd, &ioctl_flags);

)

Syzkaller Specification A
- DM_VERSION: ... ls’
- UNKNOWN
- FUNC: lookup_ioctl
- USAGE:
cmd = _IOC_NR(command);fn = lookup_ioctl(cmd, &ioctl_flags);

Figure 6. Iterative prompt for identifier deduction

instance, the device mapper driver shown in Figure 2a ini-
tiates the unlocked_ioctl field in the structure _ctl_fops
by using dm_ctl_ioctl function. We label _ctl_fops as
the device operation handler and extract dm_ctl_ioctl
to generate specifications for ioctl syscalls. KernelGPT
focuses on inference from source code to descriptions,
so we use a straightforward pattern-searching method
to find device and socket operations.

o Kernel Definition Extraction. The extractor compiles all
definitions of function, struct, union, and enum found
within the kernel. These definitions are used as guid-
ance for LLMs in the specification generation and repair
processes, provided when LLMs indicate their necessity
(ExtractCode function in Algorithm 1).

Analysis LLM. While our approach is general and inde-
pendent of the specific LLMs used, our tool, KernelGPT, is
constructed atop GPT-4 [38]. At each step, we utilize the
OpenAl APIs to query GPT-4, with a low-temperature of
0.1. We set the stopping criteria for analysis as 5 by default.
Iterative analysis. We design a structured prompt template
to facilitate interaction with LLMs for the kernel code anal-
ysis. For instance, Figure 6 presents the first two steps of
identifier deduction (§ 3.1.1) for the device mapper driver.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

The dm_ct1_ioctl handler, registered as the ioctl handler, of-
floads its entire functionality to another function, ctl_ioctl.
As a result, after examining dm_ct1l_ioctl, LLMs are unable
to deduce any identifier values and designate ctl_ioctl as
the absent function. Then KernelGPT extracts the source
code for ctl_ioctl and, together with the unknown infor-
mation returned by the first step, re-queries LLMs. In the
second round, LLMs successfully identifies one identifier
value, DM_VERSION, while other values related to the func-
tion lookup_ioctl remain undetermined. Thus, LLMs report
DM_VERSION as one identifier value and lookup_ioctl as the
missing function, which will be analyzed in the next step to
infer more identifier values.

We set the default value of MAX_ITER to 5 (Line 3, Al-

gorithm 1). For efficiency, our implementation caches and
reuses results from previously explored paths. With these
configurations, we observed no termination issues through-
out our experiments.
Specification generation. Rather than generating descrip-
tions for all possible drivers and sockets, we focus on those
not covered by existing specifications, which are often less
thoroughly tested. We select drivers and sockets activated in
our configuration, excluding ones used for debugging (e.g.,
/dev/gup_test) or requiring specific hardware/architecture,
as testing them would be meaningless or impractical. This
filtering process is largely automated: debug drivers are eas-
ily identified by their _test suffix, and hardware-specific
drivers can be filtered by focusing only on bootable modules.
Validation. We leverage two tools in Syzkaller, syz-extract
and syz-generate to validate the generated specifications,
which can detect many types of errors, including issues such
as undefined types, wrong macro names, unmatched depen-
dencies, and more.

5 Evaluation

We conduct an extensive evaluation on a workstation with
96 cores and 512 GB RAM, running Ubuntu 20.04.5 LTS. We
selected the Linux kernel version 6.7 (d2f51b) as our target.
Following prior work [25], we use the allyesconfig ker-
nel configuration for specification generation, but use the
syzbot [4] configuration from Google to build a bootable ker-
nel for evaluation. We use the Syzkaller setting for fuzzing,
with 4 QEMU instances, each utilizing 2 CPU cores. For base-
lines, we choose SyzDescribe [25], the state-of-the-art syscall
specification generation approach, and existing Syzkaller [5]
specifications, crafted by human experts.

5.1 Specification Generation for Missing

Under the allyesconfig option, KernelGPT scans 666 dri-
ver operation and 85 socket operation handlers. Out of the
them, 278 and 81 are respectively loaded under the syzbot
option. For these loaded driver and socket operation han-
dlers, we generated missing descriptions, as presented in

Chenyuan Yang, Zijie Zhao, and Lingming Zhang

Table 1. Specifications for driver/socket handlers

SyzDescribe KernelGPT

Total # Incomplete # Valid # Valid (Fixed)

Driver 278 75 20 70 (30)
Socket 81 66 N/A 57 (12)
Total 359 141 20 127 (42)

Missing Driver Specs Distribution Missing Socket Specs Distribution

0 40 20
v (9
b=l =]
s s
220 810
A)
0 p— ' 0 !
0 25 50 75 100 0 25 50 75 100

Figure 7. Missing specification distribution

Table 2. Newly generated syscall descriptions

‘ SyzDescribe KernelGPT

‘ # Syscalls # Types ‘ # Syscalls # Types

Driver 146 168 288 170
Socket N/A N/A 244 124
Total | 146 168 | 532 294

Table 1. After analysis, 75 driver and 66 socket operation
handlers are missing one or more syscall descriptions (Col-
umn “# Incomplete”). Figure 7 presents a histogram where
the x-axis represents the percentage of missing syscall speci-
fications, and the y-axis shows the count of handlers at each
percentage level. We note that Syzkaller does not have any
description for many of these driver handlers (45 out of 75, or
60%). Plus, 22 socket handlers lack descriptions for over 80%
of their syscalls. These findings underscore the insufficient
specification of some drivers and sockets for effective testing,
highlighting the need to synthesize additional specifications.

5.1.1 Statistics of New Specifications. Among the 75
driver and 66 socket handlers with missing syscall descrip-
tions, 40 and 45 are directly validated as correct (§ 3.1), and
additional 30 and 12 are successfully repaired (§ 3.2). Hence,
KernelGPT successfully generates specifications for 70 (93%)
and 57 (86%) of the driver and socket handlers with missing
syscalls, demonstrating the effectiveness of KernelGPT for
specification generation and repair. By contrast, the state-
of-the-art syscall specification generation approach, SyzDe-
scribe [25], is limited to generating specifications for only
20 (27%) inadequately described driver handlers and cannot
analyze socket handlers at all.

The descriptions generated by KernelGPT for these han-
dlers includes 532 (13.6%) new syscalls, in addition to the
3903 existing syscalls described by Syzkaller, as shown in

KernelGPT: Enhanced Kernel Fuzzing via Large Language Models

Table 3. Overall effectiveness of KernelGPT (3 rep.)

‘ Cov Unique Cov Crash

Syzkaller 204,923 - 16.0
Syzkaller + SyzDescribe | 201,634 14,585 13.7
Syzkaller + KernelGPT 209,673 20,472 17.7

Table 2. This also includes additional 294 descriptions for
new types employed within these syscall specifications. By
contrast, SyzDescribe has only 146 (3.7%) new syscall descrip-
tions and 168 new type definitions for the drivers. Again,
SyzDescribe lacks support for analyzing sockets, resulting
in “N/A” entries in the corresponding table sections.

KernelGPT takes 4.7 hours to generate specifications for
these 532 syscalls, more efficient than SyzDescribe, which
requires 3.8 hours for just 146 syscalls. It processes approxi-
mately 5.56 million input tokens and generates 400,000 out-
put tokens, with an average of 2,630 input and 189 output
tokens per prompt. The total cost of $34 is negligible consid-
ering these specifications guide extensive fuzzing campaigns
that typically run for days or weeks.

LLM-generated specifications offer unmatched readability
compared to previous techniques. While existing methods
often use random numbers for syscall names, file descriptor
names, and struct field names, KernelGPT leverages LLM’s
ability to generate meaningful names, closely resembling
expert-written specifications. For example, we have been re-
quested by Syzkaller developers to upstream our generated
specification for the CEC driver after we reported several
bugs in the driver. Our generated specification, covering 12
syscalls and 10 structs/unions with 47 fields in total, was
merged into Syzkaller with only one word changed manu-
ally [51]. In contrast, a previous attempt to merge a number
of SyzDescribe generated specifications led to lengthy code
review discussions and was not merged [50]. A quote from
Syzkaller developers also highlights the importance of speci-
fication readability: “Lots of automated descriptions that I saw
are unreadable ... When you start digging they turn out to be
bad in some way, but discovering that is extremely hard, it
should be easy (e.g. literal constant names)” [3].

5.1.2 Coverage Improvement by New Specifications.
To show the effectiveness of the new specifications synthe-
sized by KernelGPT for kernel fuzzing, we integrate them
with the existing Syzkaller specifications, resulting in a com-
bined suite (Syzkaller + Kernel GPT). We conduct a 24-hour
fuzzing session (192 CPU hours). For comparison, we also
run the original Syzkaller and a combined suite of Syzkaller
with the descriptions generated by SyzDescribe (Syzkaller +
SyzDescribe), each under identical conditions and with three
repetitions. The results are depicted in Table 3, where the
Syzkaller + KernelGPT suite covers 4,750 and 8,039 more ba-
sic blocks than the original Syzkaller and the SyzDescribe in-
tegration, respectively. Additionally, Kernel GPT adds 20,742

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

unique basic blocks to Syzkaller’s coverage, in contrast to
SyzDescribe’s contribution of 14,585 additional unique blocks.
These results underscore the contribution of KernelGPT-
generated missing descriptions to enhancing coverage in
kernel fuzzing.

5.1.3 Correctness of New Specifications. To assess the
semantic correctness of Kernel GPT-generated specifications,
we manually examined the specifications for 45 drivers de-
void of descriptions in Syzkaller (detailed in § 5.1), encom-
passing a total of 313 IOCTL syscall descriptions. Primarily,
we focused on syscalls that KernelGPT overlooked, those
with incorrect identifiers, and syscalls featuring erroneous
types.

Regarding missing syscalls, we discovered that the major-
ity of drivers (42/45, 93.3%) did not omit any syscall. For the
three drivers with missing syscall descriptions, their actual
syscall handling was delegated to other functions, some-
times even multiple times. This underscores the challenges
LLMs face in analyzing indirect function calls. Moreover,
we identified only 3 (0.9%) syscalls out of 2 (4.4%) drivers
with incorrect identifier values. Upon closer inspection, we
determined that modifications to identifier values, such as
if (DRM_IOCTL_NR(cmd) == DRM_COMMAND), which checks the
modified identifier value, and DRM_COMMAND not being the true
identifier value in this context, were responsible. Fortunately,
LLMs only occasionally made mistakes in this regard, as evi-
denced by one driver with 16 such modified identifier values,
yet only one of them was inferred incorrectly by the LLM.
Lastly, only 9 syscalls out of 7 drivers exhibited incorrect
types. Overall, these results show that Kernel GPT can infer
specifications with high accuracy and completeness.

5.1.4 Bug Detection by New Specifications. Table 4
shows the unknown kernel vulnerabilities detected using the
newly generated specifications by KernelGPT. Kernel GPT
has detected 24 previously unknown bugs, with 21 confirmed
by the kernel developers. 11 of them are assigned with CVE
numbers, and 12 are already fixed. Notably, none of them can
be detected by the default Syzkaller or SyzDescribe since
they are only triggered by the new descriptions generated
by KernelGPT, emphasizing the effectiveness of KernelGPT
in revealing real-world kernel bugs. 17 bugs are detected
from the drivers/sockets that have been loaded in the default
syzbot configuration for an extended period but Syzkaller
lacks specifications for them. Interestingly, the other 7 bugs
were not revealed by Syzkaller because their specifications
are incomplete. For example, Syzkaller’s descriptions for
the RDS socket [54] cover only the recvmsg syscall, omit-
ting sendto. By generating the missing sendto specification,
KernelGPT uncovered an array index out-of-bounds vul-
nerability in it, which was acknowledged with a CVE and
patched by kernel developers. Next, we analyze and discuss
two additional CVEs that are in the non-described drivers.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Chenyuan Yang, Zijie Zhao, and Lingming Zhang

Table 4. New bugs detected by Kernel GPT

Crash with new specs

‘New Confirmed Fixed‘ CVE

kmalloc bug in ctl_ioctl

kmalloc bug in dm_table_create

KASAN: slab-use-after-free Read in cec_queue_msg_fh
ODEBUG bug in cec_transmit_msg_fh

WARNING in cec_data_cancel

INFO: task hung in cec_claim_log_addrs

general protection fault in cec_transmit_done_ts
kernel BUG in btrfs_get_root_ref

general protection fault in btrfs_update_reloc_root
zero-size vmalloc in ubi_read_volume_table
UBSAN: array-index-out-of-bounds in rds_cmsg_recv
memory leak in ubi_attach

memory leak in posix_clock_open

memory leak in __ip6_append_data

possible deadlock in dvb_demux_release

INFO: task hung in __rq_qos_throttle

WARNING in usb_ep_queue

memory leak in dvb_dmxdev_add_pid

memory leak in dvb_dvr_do_ioctl

general protection fault in dvb_vb2_expbuf
general protection fault in cleanup_mapped_device
WARNING in vb2_core_reqgbufs

BUG: corrupted list in vep_queue

divide error in uvc_queue_setup

SN N N N N N N NN N NN NN NN NENENEN

Syzkaller SyzDescribe

v v CVE-2024-23851
v v CVE-2023-52429
v v CVE-2024-23848
v v

v v

v

v v

v v CVE-2024-23850
v

v v CVE-2024-25739
v v CVE-2024-23849
v CVE-2024-25740
v v CVE-2024-26655
v

CVE-2024-25741

ANEN

v CVE-2024-50291
v CVE-2024-50277

X X X X XX X XX XXX XX XXX XXX XX XX
X XX XX XXX XXX XX XXX XXXXX XXX

ANENENENEN

X
=

Total ‘

[&)
[
-
N
[
[
(=]
=]

CVE-2024-23848. This vulnerability, titled KASAN: slab-use-
after-free Read in cec_queue_msg_fh, is found within the CEC
driver, for which Syzkaller lacks descriptions. It accesses a
variable after it has been deallocated by kfree(fh). The issue
stems from the driver’s failure to properly maintain a lock
while releasing resources, leading to a Use-After-Free vul-
nerability. This bug has been rectified by kernel developers
and has been assigned a CVE due to its exploitability.
CVE-2024-23851. This bug, kmalloc bug in ctl_ioctl, is de-
tected by KernelGPT in the device mapper driver, which is
also not described by Syzkaller. The root cause is that the
driver neglects to check the allocation size for kvmalloc, lead-
ing to the possibility of allocating excessively large memory
sizes. Specifically, the issue is associated with the date_size
field in the dm_ioctl struct. This field plays a crucial role in
allocating memory during the preparation of the data struc-
ture within copy_param. These elements are key in the pro-
cess of allocating targets while executing dm_table_create.
Notably, although SyzDescribe generates a specification for
this driver, it incorporates an incorrect device filename, an
erroneous command value, and imprecise types, thereby fail-
ing to detect this vulnerability. Linus Torvalds confirmed this
bug [1] in addition to providing detailed fixing suggestions
since it required an in-depth understanding of the entire Linux
codebase. Given its potential for exploitation in DoS attacks,
it has also been assigned a CVE.

5.2 Specification Generation for Existing

To further evaluate the quality of KernelGPT-generated spec-
ifications in terms of fuzzing, we apply it to generate specifi-
cations for the “existing” drivers and sockets described by
our baselines, Syzkaller and SyzDescribe [25], the state-of-
the-art specification generation techniques. We opt for all
the 30 drivers used in the evaluation setting of SyzDescribe,
as detailed in Table 6 of their paper [25]. For sockets, we
compare against Syzkaller only. Regarding SyzDescribe, it
cannot analyze and generate descriptions for sockets, attrib-
uted to the extensive implementation efforts required. We
randomly selected 10 socket handlers using a seed value of
0, after arranging them in alphabetical order. We run each
generated specification independently for 6 hours (48 CPU
hours) with 3 repetitions to compare the coverage results.
During these runs, we specifically enabled only the syscalls
included in the specification for each driver or socket.

5.2.1 Device Drivers. Table 5 presents the results for dri-
vers. Due to space constraints, we omit the average number
of unique crashes for each driver in Table 5. In total, Ker-
nelGPT triggers 24.0 unique crashes, compared to 21.0 by
Syzkaller and 20.7 by SyzDescribe. Two baseline drivers,
ashmem and fd#, are no longer supported in Linux 6 (“N/A”).
Notably, KernelGPT achieves the highest basic block cover-
age and crashes, surpassing the baselines by at least 18.0%
and 17.6%. Moreover, Kernel GPT performs the best on 20
of 28 (excluding the 2 invalid drivers, highlighted in bold),

KernelGPT: Enhanced Kernel Fuzzing via Large Language Models

Table 5. Comparison of driver specification generation with
state-of-the-art solutions. #Sys is the number of syscalls de-
scribed for the drivers. Cov represents the average coverage.

‘ Syzkaller ‘ SyzDescribe ‘ KernelGPT

‘ #Sys Cov ‘ #Sys Cov ‘ #Sys Cov

ashmem N/A - N/A - N/A -

btrfs-control 1 1523 5 2848 5 2786
capi20 13 2818 19 3011 14 3138
controlC# 22 4666 Err - 15 4703
fd# N/A - N/A - N/A -

fuse 2 1719 2 2315 2 2425
hpet 1 1591 7 2289 7 2493
i2c-# 10 4168 10 4024 10 4475
kvm 118 10948 165 9444 71 15605
loop-control 4 7042 4 8211 4 8537
loop# 12 8498 12 8519 12 8518
mISDNtimer 3 1992 3 1965 3 1960
nbd# 11 4103 13 5311 12 5475
nvram 1 1618 3 2329 6 2341
PPP 24 5710 41 6102 34 7509
ptmx 49 11598 41 10870 30 11344
qat_adf_ctl 6 2788 6 2651 6 2883
rfkill 3 2117 4 2388 3 2301
rtc# 24 4458 33 4596 17 5513
sg# 39 7412 30 6414 43 7392
snapshot 13 3076 16 3260 15 3470
sr# 1 2882 68 3725 58 5091
timer 16 3328 Err - 17 3621
udmabuf 4 2771 25 2115 4 2921
uinput 22 5470 24 4714 21 6397
usbmon# 9 3646 16 3806 9 4332
vhost-net 34 3615 25 3435 22 3541
vhost-vsock 3 2911 25 3448 22 3803
vmci 18 3760 26 4316 18 4674
vsock 1 1541 2 1821 2 1744
Total | 464 117769 | 625* 113927 | 482 138992

whereas Syzkaller and SyzDescribe lead in only 4 and 4,
respectively. This highlights the effectiveness of KernelGPT-
generated specifications in enhancing fuzzing. For kvm dri-
ver [53], KernelGPT identifies two additional operation han-
dlers, kvm_vm_fops and kvm_vcpu_fops, as dependencies. This
leads to a coverage increase of 42.5% and 65.2% compared to
baselines.

While SyzDescribe has the largest set of specifications, it
repeatedly describes the same ioctl syscall using different
types, which is atypical. An ioctl command accepts only a
single type in most scenarios. Excluding duplicates, Kernel-
GPT describes more distinct syscalls (482) than SyzDescribe
(464). Additionally, SyzDescribe incorrectly inferred device
names for controlC# and timer, preventing coverage.

5.2.2 Sockets. Table 6 presents the results for sockets. We
observe that KernelGPT can cover 18.6% more basic blocks
than our baseline Syzkaller, demonstrating the effectiveness
of our generated specifications for sockets. Notably, Ker-
nelGPT describes significantly more syscalls than Syzkaller,

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

Table 6. Comparison on socket specification generation.

‘ Syzkaller ‘ KernelGPT

‘ #Sys. Cov Crash ‘ # Sys. Cov Crash
caif_stream 4 8947 0.7 6 11902 0.7
12tp_ip6 38 18350 0.7 99 18080 0.7
llc_ui 10 7648 0.3 24 16437 0.0
mptcp 22 10480 1.3 70 13942 0.7
packet 22 22082 0.3 25 21363 0.3
phonet_dgram 7 11426 1.0 12 15202 0.7
pppol2tp 10 18789 03 14 12379 07
rds 11 13693 0.3 19 17462 1.0
rfcomm_sock 22 7263 1.0 16 10893 0.7
sco_sock 20 11349 1.0 19 16527 0.7
Total | 166 130027 7.0 | 304 154187 6.0

showcasing Kernel GPT’s capability in syscall discovery. This
is also because Syzkaller often uses a single syscall with
various command values, while KernelGPT generates dis-
tinct syscalls for each command value. For example, Ker-
nelGPT synthesizes 99 descriptions for the 12tp_ip6 socket
handler, compared to Syzkaller’s 38. This is because the sin-
gle Syzkaller syscall of this socket, getsockopt$inet6_int,
uses flags[inet6_option_types_int] as the command value
list, encompassing 45 unique syscall identifier values.

5.2.3 Ablation Study. We perform a comprehensive ab-
lation study to evaluate how KernelGPT’s behavior would
be affected if different components of it were disabled or
modified. Due to resource limitations, we selected only the
first 10 valid drivers from Table 5.

Iterative Multi-Stage Generation. We experimented with
a new setup where all function code related to syscalls was
combined into a single prompt and the LLM generated the
specification in one step, deviating from our iterative multi-
stage generation process. This simplified approach, however,
resulted in a noticeable decline in the quality of the generated
specifications, especially for complex drivers like kvm and
loop#. For example, iterative multi-stage prompting infers 71
syscalls and 28 types for kvm, while an all-in-one prompting
approach infers only 42 syscalls and 11 types, resulting in a
substantial decline in coverage (15,605 versus 5,457). Overall,
iterative multi-stage prompting can infer 1.28X more syscalls
and 2.37X more types, leading to a 1.39X improvement in
coverage for these 10 drivers.

LLM Choice. We examined the performance of KernelGPT
when utilizing other LLMs, specifically GPT-3.5 and GPT-4o.
Our observations revealed that employing GPT-3.5 signifi-
cantly reduced the number of described syscalls (85 versus
143), leading to a 21% decrease in coverage compared to
our default choice, GPT-4. Conversely, when using GPT-4o,
KernelGPT was able to infer a similar number of syscalls
(144 versus 143), and the coverage results were compara-
ble to our default choice, GPT-4 (55,771 versus 54,640). We

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

would conclude that the syscall specification inference task
necessitates a sufficiently powerful model like GPT-4 and
GPT-4o.

6 Related Work
6.1 Kernel Fuzzing

SyzGen [14] infers syscall specifications but targets binary-
only macOS drivers, leveraging symbolic execution to re-
cover the data types and syscall traces to find dependencies.
Moonshine [42] collects and distills syscall traces to gener-
ate a seed pool for Syzkaller. SyzVegas [55] leverages rein-
forcement learning to dynamically improve seed and task
selection. HEALER [48] infers syscall dependencies by ob-
serving coverage changes with different combinations. Plus,
SyzDirect [52] applies directed grey-box fuzzing for Syzkaller
by incorporating distance information. PrIntFuzz [34] uses
static analysis to extract driver information and generate
their simulators for fuzzing. Focusing on synthesizing speci-
fications, KernelGPT is orthogonal to the above techniques
and could be combined to improve Syzkaller collectively.

6.2 Learning-Based Fuzzing

Machine learning approaches to input generation [16, 22,
32, 43, 45] explored using sequence-to-sequence models to
learn program syntax and generation patterns. For instance,
Learn&Fuzz [22] leveraged sequence-to-sequence models
for grammar-based fuzzing by learning from sample inputs.
DeepFuzz [32] extended this approach to generate C pro-
grams for compiler testing. DeepSmith [16] also demon-
strated the potential of learning program patterns from a
large corpus. However, these approaches faced significant
limitations: they required extensive domain-specific training
data, exhibited lower throughput compared to traditional
fuzzers, and struggled to leverage existing fuzzing infras-
tructure. Our initial explorations show that even using more
powerful LLMs for direct input generation in kernel fuzzing
performed notably worse than basic Syzkaller.

Recent advancements have shown that LLMs [13, 31, 37,
38, 44] excel in a variety of natural language processing [10]
and programming tasks [11, 58, 60, 62]. Their proficiency
in diverse tasks is attributed to the extensive training on
vast datasets, e.g., GPT4 [38] is pre-trained using trillions
of text tokens from the entire Internet. As a result, LLMs
can be employed in various tasks simply by following in-
structions [8, 37, 41], eliminating the need for specialized
training. Recently, a growing body of research has focused on
leveraging LLMs for software testing, covering both unit test
generation [30, 36, 46, 66] and fuzzing [17, 26, 35, 59, 63]. For

Chenyuan Yang, Zijie Zhao, and Lingming Zhang

example, TitanFuzz [17] pioneered the application of mod-
ern LLMs for both generation-based [33, 65] and mutation-
based [18, 29] fuzzing, while Fuzz4All [59] further demon-
strated that the multilingual potentials of LLMs can be uti-
lized to serve as a universal fuzzer for a wide range of soft-
ware systems.

KernelGPT takes a fundamentally different approach from
both traditional ML-based and recent LLM-based fuzzing
techniques. Instead of directly generating test inputs, we inte-
grate LLMs with mature fuzzing frameworks by synthesizing
their components (i.e., input generators). This strategy lever-
ages the expertise and resources invested in well-developed
fuzzing tools while capitalizing on LLMs’ capabilities. To the
best of our knowledge, KernelGPT is the first work to suc-
cessfully apply LLMs to kernel fuzzing, demonstrating state-
of-the-art performance in generating high-quality syscall
specifications.

7 Conclusion

In this paper, we propose KernelGPT, the first approach to
synthesizing syscall specifications automatically via LLMs
for enhanced kernel fuzzing. It employs an iterative method
to autonomously deduce syscall specifications and further
repair them using validation feedback. Experimental results
show that KernelGPT helps improve Syzkaller’s coverage
and can detect 24 previously unknown bugs through the
newly generated specifications, with 11 CVE assignments
and 12 fixed. Additionally, a number of specifications inferred
by KernelGPT are already merged into Syzkaller repository,
following a request from its development team. To our knowl-
edge, this is the first automated approach to leveraging LLMs
for kernel fuzzing. It could open up numerous possibilities
for future research in this critical application domain.

Acknowledgments

We are grateful to the anonymous reviewers and our shep-
herd, Youngjin Kwon, for their valuable feedback that helped
improve this paper. This work was partially supported by
NSF grant CCF-2131943 and Kwai Inc. Chenyuan Yang was
partially supported by Boeing for research on Linux kernel
testing. We also thank Ziqi Zhang for his helpful suggestions
on the manuscript.

References

[1] Email thread with Linus. https://lore.kernel.org/all/XXX@XXX.com/T/
#XXX.

[2] GPT4 Turbo. https://platform.openai.com/docs/models/gpt-4-and-
gpt-4-turbo.

[3] sys/linux: automatic syscall interface extraction. https://github.com/
google/syzkaller/issues/590.

[4] Syzbot. https://syzkaller.appspot.com/upstream/.

[5] Syzkaller. https://github.com/google/syzkaller/.

[6] syzlang. https://github.com/google/syzkaller/blob/master/docs/
syscall_descriptions_syntax.md.

[7] The LLVM Compiler Infrastructure. https://llvm.org.

https://lore.kernel.org/all/XXX@XXX.com/T/#xxx
https://lore.kernel.org/all/XXX@XXX.com/T/#xxx
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://github.com/google/syzkaller/issues/590
https://github.com/google/syzkaller/issues/590
https://syzkaller.appspot.com/upstream/
https://github.com/google/syzkaller/
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://github.com/google/syzkaller/blob/master/docs/syscall_descriptions_syntax.md
https://llvm.org

KernelGPT: Enhanced Kernel Fuzzing via Large Language Models

(8]

(10]

[11

—

(12]

(13]

(14]

(15]

(16]

(17]

[18

—

[19]

[20]

[21]

[22

—

(23]

(24]

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su,
Bryan Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, etal. A
multitask, multilingual, multimodal evaluation of chatgpt on reasoning,
hallucination, and interactivity. arXiv preprint arXiv:2302.04023, 2023.
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877-1901, 2020.
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877-1901, 2020.
Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes
Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li,
Scott Lundberg, et al. Sparks of artificial general intelligence: Early
experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.
Joseph Bursey, Ardalan Amiri Sani, and Zhiyun Qian. Syzretrospector:
A large-scale retrospective study of syzbot, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

Weiteng Chen, Yu Wang, Zheng Zhang, and Zhiyun Qian. Syzgen:
Automated generation of syscall specification of closed-source macos
drivers. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’21, page 749-763, New York, NY,
USA, 2021. Association for Computing Machinery.

Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili,
Shuang Hao, Christopher Kruegel, and Giovanni Vigna. Difuze: Inter-
face aware fuzzing for kernel drivers. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pages
2123-2138, 2017.

Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh
Leather. Compiler fuzzing through deep learning. In Proceedings
of the 27th ACM SIGSOFT international symposium on software testing
and analysis, pages 95-105, 2018.

Yinlin Deng, Chungiu Steven Xia, Haoran Peng, Chenyuan Yang, and
Lingming Zhang. Large language models are zero-shot fuzzers: Fuzzing
deep-learning libraries via large language models. In Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 2023, 2023.

Alastair F Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thom-
son. Automated testing of graphics shader compilers. Proceedings of
the ACM on Programming Languages, 1(OOPSLA):1-29, 2017.
Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Ben-
jamin Chelf. Bugs as deviant behavior: A general approach to inferring
errors in systems code. SIGOPS Oper. Syst. Rev., 35(5):57-72, oct 2001.
Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Code-
bert: A pre-trained model for programming and natural languages.
arXiv preprint arXiv:2002.08155, 2020.

Marius Fleischer, Dipanjan Das, Priyanka Bose, Weiheng Bai, Kangjie
Lu, Mathias Payer, Christopher Kruegel, and Giovanni Vigna.
{ACTOR}:{Action-Guided} kernel fuzzing. In 32nd USENIX Secu-
rity Symposium (USENIX Security 23), pages 5003-5020, 2023.

Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Ma-
chine learning for input fuzzing. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 50-59.
IEEE, 2017.

NCC Group. Triforce Linux Syscall Fuzzer.
nccgroup/TriforceLinuxSyscallFuzzer.
HyungSeok Han and Sang Kil Cha. Imf: Inferred model-based fuzzer.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, page 2345-2358, New York, NY,

https://github.com/

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]
[40]
[41]

[42]

[43]

[44]

[45]

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

USA, 2017. Association for Computing Machinery.

Yu Hao, Guoren Li, Xiaochen Zou, Weiteng Chen, Shitong Zhu, Zhiyun
Qian, and Ardalan Amiri Sani. Syzdescribe: Principled, automated,
static generation of syscall descriptions for kernel drivers. In 2023
IEEE Symposium on Security and Privacy (SP), pages 3262-3278. IEEE
Computer Society, 2023.

Jie Hu, Qian Zhang, and Heng Yin. Augmenting greybox fuzzing with
generative ai. arXiv preprint arXiv:2306.06782, 2023.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu,
Etsuko Ishii, Ye Jin Bang, Andrea Madotto, and Pascale Fung. Survey
of hallucination in natural language generation. ACM Computing
Surveys, 55(12):1-38, 2023.

Dave Jones. Trinity. https://github.com/kernelslacker/trinity.

Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via
equivalence modulo inputs. ACM Sigplan Notices, 49(6):216-226, 2014.
Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Sid-
dhartha Sen. Codamosa: Escaping coverage plateaus in test generation
with pre-trained large language models. In International conference on
software engineering (ICSE), 2023.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis
Kocetkov, Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li,
Jenny Chim, et al. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161, 2023.

Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. Deepfuzz:
Automatic generation of syntax valid ¢ programs for fuzz testing. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 1044-1051, 2019.

Vsevolod Livinskii, Dmitry Babokin, and John Regehr. Random testing
for ¢ and c++ compilers with yarpgen. Proceedings of the ACM on
Programming Languages, 4(OOPSLA):1-25, 2020.

Zheyu Ma, Bodong Zhao, Letu Ren, Zheming Li, Sigi Ma, Xiapu Luo,
and Chao Zhang. Printfuzz: fuzzing linux drivers via automated virtual
device simulation. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2022, page 404-416,
New York, NY, USA, 2022. Association for Computing Machinery.
Ruijie Meng, Martin Mirchev, Marcel Bohme, and Abhik Roychoud-
hury. Large language model guided protocol fuzzing. In Proceedings
of the 31st Annual Network and Distributed System Security Symposium
(NDSS), 2024.

Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond] Mooney, and
Milos Gligoric. Learning deep semantics for test completion. arXiv
preprint arXiv:2302.10166, 2023.

OpenAl Chatgpt. 2023. https://openai.com/blog/chatgpt.

OpenAlL Gpt-4 technical report, 2023.

Oracle. Kernel-Fuzzing. https://github.com/oracle/kernel-fuzzing.
Palash B. Oswal. Improving Linux Kernel Fuzzing. PhD thesis, 2023.
Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wain-
wright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina
Slama, Alex Ray, et al. Training language models to follow instruc-
tions with human feedback. Advances in Neural Information Processing
Systems, 35:27730-27744, 2022.

Shankara Pailoor, Andrew Aday, and Suman Jana. {MoonShine}:
Optimizing {OS} fuzzer seed selection with trace distillation. In 27th
USENIX Security Symposium (USENIX Security 18), pages 729-743, 2018.
Mohit Rajpal, William Blum, and Rishabh Singh. Not all bytes are
equal: Neural byte sieve for fuzzing. ArXiv, abs/1711.04596, 2017.
Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat,
Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin,
et al. Code llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023.

Martin Sablotny, Bjern Sand Jensen, and Chris W. Johnson. Recur-
rent neural networks for fuzz testing web browsers. In International
Conference on Information Security and Cryptology, 2018.

https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/nccgroup/TriforceLinuxSyscallFuzzer
https://github.com/kernelslacker/trinity
https://openai.com/blog/chatgpt
https://github.com/oracle/kernel-fuzzing

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands

[46]

(47]

(49]

(50

[t

[51

—

(52]

(53]

(54]

(55]

(56]

(57]

(58]

(59]

[60]

[61]

(62]

(63]

(64]

(65]

Max Schéfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. Adap-
tive test generation using a large language model. arXiv preprint
arXiv:2302.06527, 2023.

Hao Sun, Yuheng Shen, Jianzhong Liu, Yiru Xu, and Yu Jiang. KSG:
Augmenting kernel fuzzing with system call specification generation.
In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages
351-366, Carlsbad, CA, July 2022. USENIX Association.

Hao Sun, Yuheng Shen, Cong Wang, Jianzhong Liu, Yu Jiang, Ting
Chen, and Aiguo Cui. Healer: Relation learning guided kernel fuzzing.
In Proceedings of the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, pages 344-358, 2021.

Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute force
vulnerability discovery. Pearson Education, 2007.

Syzkaller Project. sys/linux: syz-describe: auto generate syzlang. https:
//github.com/google/syzkaller/pull/3143, 2022.

Syzkaller Project. Merged specifications in syzkaller. https://github.
com/google/syzkaller/pull/xxxx, 2024.

Xin Tan, Yuan Zhang, Jiadong Lu, Xin Xiong, Zhuang Liu, and Min
Yang. Syzdirect: Directed greybox fuzzing for linux kernel. In Proceed-
ings of the 2023 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’23, page 1630-1644, New York, NY, USA, 2023.
Association for Computing Machinery.

The Linux Kernel documentation. Kvm. https://docs.kernel.org/virt/
kvm/index.html, 2024.

The Linux Kernel documentation. Rds. https://docs.kernel.org/
networking/rds.html, 2024.

Daimeng Wang, Zheng Zhang, Hang Zhang, Zhiyun Qian, Srikanth V
Krishnamurthy, and Nael Abu-Ghazaleh. {SyzVegas}: Beating kernel
fuzzing odds with reinforcement learning. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2741-2758, 2021.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang.
Magicoder: Source code is all you need. arXiv preprint arXiv:2312.02120,
2023.

Wikipedia contributors. Device mapper — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Device_mapper&
oldid=1146533552, 2023. [Online; accessed 28-December-2023].
Chungiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang.
Agentless: Demystifying llm-based software engineering agents. arXiv
preprint arXiv:2407.01489, 2024.

Chungiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel,
and Lingming Zhang. Universal fuzzing via large language models.
arXiv preprint arXiv:2308.04748, 2023.

Chungqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated
program repair in the era of large pre-trained language models. In
2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE), pages 1482-1494, 2023.

Chungiu Steven Xia and Lingming Zhang. Keep the conversation
going: Fixing 162 out of 337 bugs for $0.42 each using chatgpt. arXiv
preprint arXiv:2304.00385, 2023.

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn.
A systematic evaluation of large language models of code. In Proceed-
ings of the 6th ACM SIGPLAN International Symposium on Machine
Programming, pages 1-10, 2022.

Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Jiawei Liu, Rey-
haneh Jabbarvand, and Lingming Zhang. Whitefox: White-box com-
piler fuzzing empowered by large language models. 8(OOPSLA2),
October 2024.

Chenyuan Yang, Yinlin Deng, Jiayi Yao, Yuxing Tu, Hanchi Li, and
Lingming Zhang. Fuzzing automatic differentiation in deep-learning
libraries. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pages 1174-1186. IEEE, 2023.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
understanding bugs in ¢ compilers. In Proceedings of the 32nd ACM SIG-
PLAN conference on Programming language design and implementation,

Chenyuan Yang, Zijie Zhao, and Lingming Zhang

pages 283-294, 2011.

[66] Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang,

Yixuan Chen, and Xin Peng. No more manual tests? evaluating
and improving chatgpt for unit test generation. arXiv preprint
arXiv:2305.04207, 2023.

[67] Andreas Zeller, Rahul Gopinath, Marcel Bbhme, Gordon Fraser, and

Christian Holler. The fuzzing book, 2019.

https://github.com/google/syzkaller/pull/3143
https://github.com/google/syzkaller/pull/3143
https://github.com/google/syzkaller/pull/xxxx
https://github.com/google/syzkaller/pull/xxxx
https://docs.kernel.org/virt/kvm/index.html
https://docs.kernel.org/virt/kvm/index.html
https://docs.kernel.org/networking/rds.html
https://docs.kernel.org/networking/rds.html
https://en.wikipedia.org/w/index.php?title=Device_mapper&oldid=1146533552
https://en.wikipedia.org/w/index.php?title=Device_mapper&oldid=1146533552

	Abstract
	1 Introduction
	2 Background
	2.1 Kernel Fuzzing
	2.2 Specification Generation
	2.3 Challenges and Opportunities

	3 Design
	3.1 Specification Generation
	3.2 Specification Validation and Repair

	4 Implementation
	5 Evaluation
	5.1 Specification Generation for Missing
	5.2 Specification Generation for Existing

	6 Related Work
	6.1 Kernel Fuzzing
	6.2 Learning-Based Fuzzing

	7 Conclusion
	References

