
∇Fuzz
Fuzzing Automatic Differentiation in

Deep-Learning Libraries
Chenyuan Yang, Yinlin Deng, Jiayi Yao

Yuxing Tu, Hanchi Li, Lingming Zhang

ICSE’23

1

Deep Learning (DL) Libraries

2

• DL pipeline
Conv2d

ReLU

MaxPool2d

Linear

CELossL

XW1

W2

Backward

Forward

Loss

Backward

X Input Tensor

Wi Weight Tensor

L Label Tensor

Model

Training

Building

Model

Automatic differentiation (AD) engine is a crucial component of any
DL system.

Data

Preparation

Model

Deployment

• DL libraries
• Provide DL APIs for building models

• Include an Automatic Differentiation (AD) engine
for training the models

Model

Training

Testing DL Libraries

3

• Model level fuzzers

input output

CRADLE, AUDEE, LEMON, NNSmith…

• API level fuzzers

Conv2Dinput output

FreeFuzz, DocTer, DeepREL…

1Gu et al. “Muffin: Testing deep learning libraries via neural architecture fuzzing”.

Muffin1

- Compare the gradient given by multiple libraries

- Only covers reverse-mode AD

- Only covers 79 DL APIs with manual annotation

- Failed to detect any confirmed AD bug

Backward Pass

Prior work mainly focuses on inference phase
Testing the correctness of AD is still understudied

Bugs in AD engine

• Training a model is a resource-consuming process

• Imagine a bug in the middle…

4

input = Tensor(shape=[5])
target = Tensor(shape=[5, 5, 5])
div = KLDivLoss(input, target)

div.backward()
crash in the gradient computation

KLDivLoss is a very popular API, used in variational autoencoder (VAE), generative
adversarial networks (GANs), recurrent neural networks (RNNs)

This bug1 is found by us in PyTorch and labelled as

1 https://github.com/pytorch/pytorch/issues/78867

AD bugs may cause DL models to crash, fail to converge,
and/or perform poorly in practical deployment, which is fatal
for safety-critical applications.

Differentiation

• How to compute the partial gradient?

• Automatic Differentiation (AD)

• Numerical Differentiation (ND)

5

×

x1 x2

𝑓 𝑥1, 𝑥2 = log 𝑥1 ⋅ 𝑥2

𝜕𝑓

𝜕𝑥1
= ?

Reverse AD

Forward AD

ND

log

Differential Testing

𝜕𝑓 𝒙

𝜕𝑥𝑖
≈

𝑓 𝒙 + 𝛿𝒆𝒊 − 𝑓(𝒙 − 𝛿𝒆𝒊)

2𝛿

Reverse Mode AD

6

×

x1 x2

𝑣1 = 2

Forward Phase Backward Phase

×

x1 x2

log 𝑣2 = 1

𝑣1 = 𝑣2

𝜕𝑣2

𝜕𝑣1
= 𝑣2 ∗

1

𝑣1
= 0.5

𝑥1 = 𝑣1

𝜕𝑣1

𝜕𝑥1
= 𝑣1 ∗ 𝑥2 = 1

𝑥2 = 𝑣1

𝜕𝑣1

𝜕𝑥2
= 𝑣1 ∗ 𝑥1 = 0.5

𝑥1 = 1 𝑥2 = 2

log 𝑣2 = 0.69

𝑓 𝑥1, 𝑥2 = log 𝑥1 ⋅ 𝑥2 𝑥1 = 1, 𝑥2 = 2

The most common AD mode in DL libraries
Efficient for high-dim input and low-dim output

Forward Mode AD

7

𝑓 𝑥1, 𝑥2 = log 𝑥1 ⋅ 𝑥2

Forward Primal Phase Forward Tangent Phase

𝑥1 = 1, 𝑥2 = 2

×

x1 x2

log

ሶ𝑥2 =
𝜕𝑥2

𝜕𝑥1
= 0ሶ𝑥1 =

𝜕𝑥1

𝜕𝑥1
= 1

ሶ𝑣1 = ሶ𝑥1 ⋅ 𝑥2 = 2

ሶ𝑣2 =
ሶ𝑣1

𝑣1
= 1

×

x1 x2

𝑣1 = 2

𝑥1 = 1 𝑥2 = 2

log 𝑣2 = 0.69

Emerging: supported in TensorFlow and PyTorch (beta);
the basis of JAX’s AD engine 1

Efficient for high-dim output and low-dim input
1 Radul et al. “You Only Linearize Once: Tangents Transpose to Gradients”. POPL 2023.

Framework of ∇Fuzz

• The first approach specifically targeting the AD engine in DL libraries

POTENTIAL
BUGS

𝐟 = Grad(𝐟)

Filter

Precision

Differentiabledef f(x):
 return torch.trace(x)

x = torch.ones(4, 2)

Fuzzer

fD(x)

fR(x)

fF(x)

∇fN(x)

∇fR(x)

∇fF(x)

Output Gradient

fD Direct Invocation

fR Reverse AD fF Forward AD

fN ND

FreeFuzz

Oracle: Output Check

• Compare the output of invocation in different execution scenarios
• When calculating the gradient, additional operations are incurred

• Despite different implementation, the output should be the same

9

Direct Invocation

Reverse AD

Forward AD

Func

Input

fD(input)

fR(input)

fF(input)

Should be the same

dynamic_index_in_dim

([1, 2, 3, 4, 5], -7)

1.0

5.0

5.0

A bug detected by ∇Fuzz and fixed in JAX

Out-of-bound negative index

Oracle: Gradient Check

• Compare the gradient in different execution scenarios
• Reverse and forward modes are implemented differently

• ND can help further check the correctness

10

Should be the same

Reverse AD

Forward AD

ND

Func

Input

∇fR(input)

∇fF(input)

∇fN(input)

0

0

1

Tensor(1.)

RReLU

A bug detected by ∇Fuzz and fixed in PyTorch

“a massive bug”

• ∇Fuzz oracle can run on the gradient function of current function
• It can test any order of gradient function

• First- and second-order gradient computation are the most frequently used

High-order Gradient

11

Func

Input

Grad(Func)

Input

GradN-1(Func)

Input

Pass Pass Pass
…

1st-order 2nd-order Nth-order

pow Grad(pow)

(2, 0) (2, 0)

Reverse AD

Forward AD

ND

[[0.0, 2.0],[0.5, 0.48]]

[[0.0, 2.0],[0.5, 0.48]]

[[0.0, 0.5],[0.5, 0.48]]

Should be the sameA bug detected by ∇Fuzz and fixed immediately in JAX

Evaluation: Bug Detection

• ∇Fuzz detects 173 bugs in total
• 144 confirmed

• 117 previously unknown

• 107 are AD-related

Library Total
Confirmed (Fixed)

Won’t Fix
Unknown Known

PyTorch 80 62 (10) 15 (9) 3

TensorFlow 29 18 (0) 5 (2) 2

JAX 34 20 (5) 3 (2) 1

OneFlow 30 17 (6) 4 (4) 0

Total 173 117 (21) 27(17) 6
12

Contributed 58.3% (7/12) of all high-priority AD bugs
for PyTorch and JAX during a two-month period.

None of the 107 AD-related bugs can be detected by existing work.

Fuzzing Automatic Differentiation in
Deep-Learning Libraries

• ∇Fuzz: first approach specifically targeting the AD engine in DL libraries,
which is a crucial component of any DL system
• Leverage different execution scenarios as test oracles to differentially test first-

and high-order gradients

• The core ∇Fuzz idea is general and can be used as oracle for future fuzzers at
different levels (API or model levels)

• Detected 173 bugs for PyTorch , TensorFlow , JAX , and OneFlow
• with 144 confirmed, 117 previously unknown, and 38 already fixed

• Contributed 58.3% (7/12) of all high-priority AD bugs for PyTorch and JAX during a
two-month period

Tool: https://github.com/ise-uiuc/NablaFuzz
Chenyuan Yang

cy54@illinois.edu
Yinlin Deng

yinlind2@illinois.edu

https://github.com/ise-uiuc/
mailto:cy54@illinois.edu
mailto:yinlind2@illinois.edu

Back-up slides

14

Evaluation: Distribution of Confirmed Bugs

• Symptoms of confirmed bugs

15

∇Fuzz Output
Gradient

Total 1st-order 2nd-order

PyTorch 31 46 44 2

TensorFlow 4 19 17 2

JAX 14 9 8 1

OneFlow 16 5 2 3

Total 65 79 71 8

More than half bugs are detected by inconsistent gradients.

Evaluation: Distribution of Confirmed Bugs

• Scenario distribution of confirmed bugs
• All: the total number of bugs located in AD

• Rev-Only/Fwd-Only: bugs only appearing in reverse/forward mode.

∇Fuzz Direct
AD

ND
All Rev-Only Fwd-Only

PyTorch 11 64 33 9 2

TensorFlow 3 18 5 4 2

JAX 3 20 3 1 0

OneFlow 16 5 5 N/A N/A

Total 33 107 46 14 4

16

Most of the bugs detected by ∇Fuzz are related to our main target AD

Evaluation: FPR and Filter

17

Output
Gradient

Total
Diff+Precision Diff Precision N/A

Pytorch 19.3% 21.2% 25.5% 57.3% 61.9% 20.7%

Tensorflow 8.3% 21.1% 34.8% 46.4% 53.1% 16.1%

JAX 11.1% 21.0% 58.1% 68.6% 78.2% 17.3%

OneFlow 12.5% 25.0% 25.0% 64.0% 64.0% 20.0%

Total 15.0% 21.3% 38.2% 60.6% 67.6% 19.3%

No FilterWith Filter

Our filtering strategies reduce FPR from 67.6% to 21.3%.
Both filtering strategies are effective; differentiability is more helpful.

Example of Rejected Bug

• When x has the lowest precision floating datatype bfloat16
• Inconsistent gradients by reverse and forward modes

• It was rejected: “This is a consequence of the intended design of bfloat16. It is
a worthwhile tradeoff for speed in deep learning contexts...”

18

x = array(-0.125, dtype=bfloat16)
RevGrad(jax.numpy.sinc, x) # 0.34375
FwdGrad(jax.numpy.sinc, x) # 0.375

𝒔𝒊𝒏𝒄(𝑥) =
sin 𝜋𝑥

𝜋𝑥

Evaluation: Coverage Comparison
PyTorch TensorFlow

C++ Cov Python Cov Time C++ Cov Python Cov Time

FreeFuzz
70639 14579

3.1h
36279 80220

3.9h
(21.1%) (13.9%) (9.77%) (30.1%)

∇Fuzz
86459 15042

25.7h
42284 88783

24.3h
(25.8%) (14.3%) (11.4%) (33.3%)

∇Fuzz 79808 14854
1.4h

37233 84848
2.9h

(seed only) (23.4%) (14.1%) (10.0%) (31.9%)

19

• Gradient computation is expensive (higher time cost).
• Gradient computation is important for system coverage:

• ∇Fuzz (seed only) have higher code coverage even with less time
compared to FreeFuzz.

Evaluation: Coverage Comparison

C++
Coverage

Python
Coverage

API
Coverage

Time Rev AD Fwd AD ND

∇Fuzz 41625
(11.21%)

88524
(33.24%)

1902 6.1h

Muffin 36884
(9.94%)

78754
(29.57%)

79 6.8h

20

∇Fuzz substantially outperforms Muffin in both code and API coverage, with
slightly less execution time.
∇Fuzz can thoroughly and automatically test the AD engines.

*For fair comparison, we run ∇Fuzz by setting the number of mutants for each API to 150

Filter: Differentiability

• Non-differentiable
• The gradient at the non-differentiable point

is undefined

• Differentiability
• f is continuous at x, and

• All partial derivatives of f exist in the
neighborhood of x and are continuous at x

• Sample neighbors of x and compare the
output and gradient
• Leverage ND

21

Evaluation: Coverage

22
PyTorch Python

PyTorch C++ TensorFlow C++

TensorFlow Python

∇Fuzz-Rev (disabling reverse mode AD)
∇Fuzz-Fwd (disabling forward mode AD)

Evaluation: Coverage

23
PyTorch Python

PyTorch C++

• For C++ coverage, ∇Fuzz outperforms FreeFuzz
significantly on both PyTorch and TensorFlow ,

with an improvement of 22.4%/16.6%.

• ∇Fuzz has larger improvement on C++
coverage than Python
• “Autograd is a hotspot for PyTorch performance, so

most of the heavy lifting is implemented in C++”

• Disabling Rev will hurt the performance most
• Reverse mode AD is the main technique and

occupies a larger portion of the DL library
implementation than the forward mode

∇Fuzz-Rev (disabling reverse mode AD)
∇Fuzz-Fwd (disabling forward mode AD)

	Slide 1: ∇Fuzz Fuzzing Automatic Differentiation in Deep-Learning Libraries
	Slide 2: Deep Learning (DL) Libraries
	Slide 3: Testing DL Libraries
	Slide 4: Bugs in AD engine
	Slide 5: Differentiation
	Slide 6: Reverse Mode AD
	Slide 7: Forward Mode AD
	Slide 8: Framework of ∇Fuzz
	Slide 9: Oracle: Output Check
	Slide 10: Oracle: Gradient Check
	Slide 11: High-order Gradient
	Slide 12: Evaluation: Bug Detection
	Slide 13: Fuzzing Automatic Differentiation in Deep-Learning Libraries
	Slide 14: Back-up slides
	Slide 15: Evaluation: Distribution of Confirmed Bugs
	Slide 16: Evaluation: Distribution of Confirmed Bugs
	Slide 17: Evaluation: FPR and Filter
	Slide 18: Example of Rejected Bug
	Slide 19: Evaluation: Coverage Comparison
	Slide 20: Evaluation: Coverage Comparison
	Slide 21: Filter: Differentiability
	Slide 22: Evaluation: Coverage
	Slide 23: Evaluation: Coverage

