VFuzz

Fuzzing Automatic Differentiation in
Deep-Learning Libraries

Chenyuan YangIYlnIm Deng IJlayl Yao* .

Yuxing Tu “Hanchi Li)Llngmlng Zhangl

b
'_...’3

ICSEZ202Z3

Deep Learning (DL) Libraries

* DL pipeline @\.?

Data N Building Model Model
Preparation Model Training Deployment

@-

e DL libraries
* Provide DL APIs for building models

Conv2d

L 2

RelLLU

v

MaxPool2d

i Linear

y

=

CELoss

* Include an Automatic Differentiation (AD) engine
for training the models

r Backward]

Forward

Loss

Backward

Automatic differentiation (AD) engine is a crucial component of any

DL system.

Testing DL Libraries

* Model level fuzzers * APl level fuzzers

input- ’% - output input # # output

Prior work mainly focuses on inference phase
Testing the correctness of AD is still understudied

Compare the gradient given by multiple libraries

Only covers reverse-mode AD

Only covers 79 DL APIs with manual annotation

Failed to detect any confirmed AD bug

1Gu et al. “Muffin: Testing deep learning libraries via neural architecture fuzzing”.

NI Y

Bugs in AD engine

* Training a model is a resource-consuming process

* Imagine a bug in the middle... @

AD bugs may cause DL models to crash, fail to converge,
and/or perform poorly in practical deployment, which is fatal
for safety-critical applications.

KLDivLoss is a very popular API, used in variational autoencoder (VAE), generative
adversarial networks (GANSs), recurrent neural networks (RNNs)

This bug! is found by us in PyTorch and labelled as

! https://github.com/pytorch/pytorch/issues/78867 4

Differentiation

* How to compute the partial gradient?

f(x1,x3) =log(x; - x7)
« Automatic Differentiation (AD)
X1 X5 Reverse AD
Forward AD

 Numerical Differentiation (ND) E

X i — ?
axl ND
log of(x) f(x+de;) — f(x—dey)
6‘xi - 20

Differential Testing

di:

Reverse Mode AD

o e e e e e e e ey o T e e e e e e e e R e e R R R M M R R e e e e e e e e e e e e e

X
S
N

— - avz 1
= 0.5
= 0.69 —
|0g & |0g Uy = 1
/I \\
Forward Phase Backward Phase

The most common AD mode in DL libraries
Efficient for high-dim input and low-dim output

o e o e e e e o e e e e

Forward Mode AD

U U RO R U U U ————

Forward Primal Phase Forward Tangent Phase

Emerging: supported in TensorFlow and PyTorch (beta);
the basis of JAX's AD engine !
Efficient for high-dim output and low-dim input

1 Radul et al. “You Only Linearize Once: Tangents Transpose to Gradients”. POPL 2023. 7

Framework of VFuzz

* The first approach specifically targeting the AD engine in DL libraries

ONEFLOW

Fuzzer

A

fo

fr

Direct Invocation

Reverse AD

fi

fe

Output Gradient

ek W
def f(x): Ifobd | VR0
—y | retumn torch.trace(x) N IfR(X) | | Via(X) |
x = torch.ones(4, 2) I I | |
| f(x) ||VﬂW) | —
N ———
(e ey |
1 1= Grad(®)_,
FreeFuzz

ND

Forward AD

Filter

V Differentiable

Precision

l

|

POTENTIAL
BUGS

| %

Oracle: Output Check

 Compare the output of invocation in different execution scenarios
 When calculating the gradient, additional operations are incurred
* Despite different implementation, the output should be the same

N y

Direct Invocation >
dynamic_index_in_dim

([11 2) 3; 41 5]) _7)
1 Forward AD

Out-of-bound negative index

5.0 X

5.0

\ 4

Reverse AD

v

Should be the same
A bug detected by VFuzz and fixed in JAX

O

Oracle: Gradient Check

 Compare the gradient in different execution scenarios
* Reverse and forward modes are implemented differently

“a massive bug”
* ND can help further check the correctness J

RReLU(m)—{“’ hes0
oo Reverse AD > 0
RReLU /
> Forward AD > 0 x
Tensor(1.) \
ND >

Should be the same

A bug detected by VFuzz and fixed in PyTorch

10

High-order Gradient

* VFuzz oracle can run on the gradient function of current function
* |t can test any order of gradient function

Reverse AD — [[0.0, 2.0],[0.5, 0.48]]

pow Pass Grad(pow)
—> Forward AD —— [[0.0, 2.0],[0.5, 0.48]]
(2, 0) (2,0)
1st-order 2nd-order ND —> [[0.0, 0.5],[0.5, 0.48]]

A bug detected by VFuzz and fixed immediately in JAX Should be the same

* First- and second-order gradient computation are the most frequently used

Evaluation: Bug Detection

e VFuzz detects 173 bugs in total

e 144 confirmed

e 117 previously unknown
e 107 are AD-related

None of the 107 AD-related bugs can be detected by existing work.

Contributed 58.3% (7/12) of all high-priority AD bugs
for PyTorch and JAX during a two-month period.

Confirmed (Fixed)

Lbrary Unknown Known eni
PyTorch O 80 62 (10) 15 (9) 3
TensorFlow 7 29 18 (0) 5(2) 2
JAX X 34 20 (5) 3(2) 1
OneFlow Or— 30 17 (6) 4 (4) 0
Total 173 117 (21) 27(17) 6

12

Fuzzing Automatic Differentiation in
Deep-Learning Libraries

* VFuzz: first approach specifically targeting the AD engine in DL libraries,
which is a crucial component of any DL system

* Leverage different execution scenarios as test oracles to differentially test first-
and high-order gradients

* The core VFuzz idea is general and can be used as oracle for future fuzzers at
different levels (APl or model levels)

* Detected 173 bugs for PyTorch(), TensorFlow™" , JAXa#X , and OneFlow2
e with 144 confirmed, 117 previously unknown, and 38 already fixed

* Contributed 58.3% (7/12) of all high-priority AD bugs for PyTorch and JAX during a
two-month period

Chenyuan Yang Yinlin Deng) .)
ov54@illinois.edu vinlind2 @illinois.edu | 100l https://github.com/ise-uiuc/NablaFuzz

https://github.com/ise-uiuc/
mailto:cy54@illinois.edu
mailto:yinlind2@illinois.edu

Back-up slides

Evaluation: Distribution of Confirmed Bugs

* Symptoms of confirmed bugs

Gradient

1st-order 2nd-order
PyTorch () 31 46 44 2
TensorFlow" 4 19 17 2
JAX ﬂ 14 9 8 1
OneFlow Or— 16 5 2 3
Total 65 79 71 8

More than half bugs are detected by inconsistent gradients.

15

Evaluation: Distribution of Confirmed Bugs

* Scenario distribution of confirmed bugs

Most of the bugs detected by VFuzz are related to our main target AD

AD
VFuzz Direct
Rev-Only Fwd-Only

PyTorch () 11 64 33 9 2
TensorFlow) 3 18 5 4 2
JAX a# 3 20 3 1 0
OneFlow Or— 16 5 5 N/A N/A
Total 33 107 46 14 4

16

Evaluation: FPR and Filter

Gradient
Output
Diff+Precision Diff Precision
Pytorch O 193% 21.2% 25.5% 57.3% 61.9% 20.7%
Tensorflow I g 39 21.1% 34.8% 46.4% 53.1% 16.1%
JAX oK 11.1% 21.0% 58.1% 68.6% 78.2% 17.3%
OneFlow @r 15 co 25.0% 25.0% 64.0% 64.0% 20.0%
Total 15.0% 21.3% 38.2% 60.6% 67.6% 19.3%
A A
With Filter No Filter

Our filtering strategies reduce FPR from 67.6% to 21.3%.

Both filtering strategies are effective; differentiability is more helpful.
17

Example of Rejected Bug

* When x has the lowest precision floating datatype bfloat16
* Inconsistent gradients by reverse and forward modes

|t was rejected: “This is a consequence of the intended design of bfloat16. It is
a worthwhile tradeoff for speed in deep learning contexts...”

sin Tx

sinc(x) = —

X = array(-0.125, dtype=bfloatl6)
RevGrad(jax.numpy.sinc, x) # 0.34375
FwdGrad(jax.numpy.sinc, x) # 0.375

Evaluation: Coverage Comparison

PyTorch TensorFlow
Python Cov C++ Cov Python Cov
70639 14579 36279 80220
FreeFuzz 3.1h 3.9h
(21.1%) (13.9%) (9.77%) (30.1%)
86459 15042 42284 88783
VFuzz 25.7h 24.3h
(25.8%) (14.3%) (11.4%) (33.3%)
VFuzz 79808 14854 37233 84848
1.4h 2.9h
(seed only) (23.4%) (14.1%) (10.0%) (31.9%)

 Gradient computation is expensive (higher time cost).
 Gradient computation is important for system coverage:
* VFuzz (seed only) have higher code coverage even with less time

compared to FreeFuzz. 19

Evaluation: Coverage Comparison

C++ Python API

Time Rev AD Fwd AD ND

Coverage Coverage Coverage

VFuzz 41625 88524 1902 6.1h \/ \/ \/

(11.21%) (33.24%)

Muffin 36884 78754 79 6.8h \/
(9.94%) (29.57%)

VFuzz substantially outperforms Muffin in both code and APl coverage, with

slightly less execution time.
VFuzz can thoroughly and automatically test the AD engines.

*For fair comparison, we run VFuzz by setting the number of mutants for each APl to 150

20

Filter: Differentiability

 Non-differentiable

* The gradient at the non-differentiable point
is undefined

* Differentiability

e fis continuous at x, and

* All partial derivatives of f exist in the
neighborhood of x and are continuous at x

* Sample neighbors of x and compare the
output and gradient
* Leverage ND

Evaluation:

.'<U # Line Coverage (x1000 lines)
o
q
o)
>
(@]
+
+

Line Coverage (x1000 lines)

Coverage

901

o O ~N N 00 0
o U1 o u»v o Wuw

15.2 1

15.01

14.8 -

14.6 -

14.4 1

14.2 1

SRR RRRE _TEER" SEEE TELRL SCLEE RULEL SRER
AAAAAA AAAA
* .-
P SRR JORR - RERY o SR - R TR o RN B - RN
O
o Ol § FreeFuzz
% VFuzz
" ©- VFuzz-Rev
--A- VFuzz-Fwd
0 200 400 600 800 1000

Mutations Per API

P SRREL - SEEEE - LR 4

L SRR * SRS * SEEES *

2 SEREED - §

&
"0‘ 90 -9 FreeFuzz
. ¥%- VFuzz
O VFuzz-Rev
-A- VFuzz-Fwd
0 200 400 600 800 1000

Mutations Per API

PyTorch Python

Line Coverage (x1000 lines)

VFuzz-Rev (disabling reverse mode AD)
VFuzz-Fwd (disabling forward mode AD)

w B b
o O 9N

w
N

U R e SRk SRR i
: A Ao A Ak A A
PN TR o JRRRE o RERR o SERRE o BERR o SEERR o
*. T
* Q ’ ’ ‘." f’ FreeFuzz
341 ’ % VFuzz
Q- VFuzz-Rev
A- VFuzz-Fwd
0 200 400 600 800 1000

TensorFlow C++ # Mutations Per AP

Line Coverage (x1000 lines)

90.0 1
87.5 1
85.0 1
82.51
80.0

77.54

75.0 1

T e ORNRP EETE TETEC SEPRP RRRR TRRE
PO R W SR S S SR SR S
*
9
el ¢ FreeFuzz
"“,.0 TORRREY) SRR SRR SRR M
- VFuzz-Rev
A- VFuzz-Fwd
0 200 400 600 800 1000

Mutations Per API

TensorFlow Python

22

Evaluation: Coverage

v 901
T SRR SR TR SRR SR UL IR SR SR
S | Ao Ak A A A A
o A
= 80{ % .
X g g0 0000000
CI.J75_
g | o
< 70 oo FreeFuzz
8 %- VFuzz
o 65 ‘ O VFuzz-Rev
[
- A& VFuzz-Fwd
#60-

0 200 400 600 800 1000

Mutations Per API

3
-
®)
q
(@)
=
0
+
+

=
b
N

T - SRR * SEEED * SEEEE - ShERE - SRR * 4

&'

=
b
o

=
-
(0]

NN A

7 S S A
"0‘ LANR - FreeFuzz
VFuzz
VFuzz-Rev

VFuzz-Fwd

=
:|>
(o))

<

=
n
I

19

=
'
o
> O %

Line Coverage (x1000 lines)

0 200 400 600 800 1000
Mutations Per API
PyTorch Python

VFuzz-Rev (disabling reverse mode AD)
VFuzz-Fwd (disabling forward mode AD)

e For C++ coverage, VFuzz outperforms FreeFuzz
significantly on both PyTorch and TensorFlow,

with an improvement of 22.4%/16.6%.

e VFuzz has larger improvement on C++

coverage than Python
» “Autograd is a hotspot for PyTorch performance, so
most of the heavy lifting is implemented in C++”

* Disabling ReV will hurt the performance most

* Reverse mode AD is the main technique and
occupies a larger portion of the DL library
implementation than the forward mode

23

	Slide 1: ∇Fuzz Fuzzing Automatic Differentiation in Deep-Learning Libraries
	Slide 2: Deep Learning (DL) Libraries
	Slide 3: Testing DL Libraries
	Slide 4: Bugs in AD engine
	Slide 5: Differentiation
	Slide 6: Reverse Mode AD
	Slide 7: Forward Mode AD
	Slide 8: Framework of ∇Fuzz
	Slide 9: Oracle: Output Check
	Slide 10: Oracle: Gradient Check
	Slide 11: High-order Gradient
	Slide 12: Evaluation: Bug Detection
	Slide 13: Fuzzing Automatic Differentiation in Deep-Learning Libraries
	Slide 14: Back-up slides
	Slide 15: Evaluation: Distribution of Confirmed Bugs
	Slide 16: Evaluation: Distribution of Confirmed Bugs
	Slide 17: Evaluation: FPR and Filter
	Slide 18: Example of Rejected Bug
	Slide 19: Evaluation: Coverage Comparison
	Slide 20: Evaluation: Coverage Comparison
	Slide 21: Filter: Differentiability
	Slide 22: Evaluation: Coverage
	Slide 23: Evaluation: Coverage

